
Submitted to:
OCaml 2017 Post-proceedings

© John Whitington & Tom Ridge
This work is licensed under the
Creative Commons Attribution License.

Direct Interpretation of Functional Programs for Debugging

John Whitington Tom Ridge
University of Leicester

UK
{jw642,tr61}@le.ac.uk

We make another assault on the longstanding problem of debugging. After exploring why debuggers
are not used as widely as one might expect, especially in functional programming environments, we
define the characteristics of a debugger which make it usable and thus widely used. We present initial
work towards a new debugger for OCaml which operates by direct interpretation of the program
source, allowing the printing out of individual steps of the program’s evaluation. We present OCamli,
a standalone interpreter, and propose a mechanism by which the interpreter could be integrated into
compiled executables, allowing part of a program to be interpreted in the same fashion as OCamli
whilst the rest of the program runs natively. We show how such a mechanism might create a source-
level debugging system that has the characteristics of a usable debugger (such as being independent of
its environment) and so may eventually be expected to be suitable for widespread adoption.

1 Introduction

This paper describes early work on a new approach to debugging programs written in the functional
programming language OCaml [25]. This approach is informed by a look at the history and characteristics
of debugging, a mild astonishment at the lack of use of debuggers in the functional programming
community in particular, and the identification of characteristics a usable debugger must have. In
addition to presenting the work which has been done, we give informed speculation on the final shape
of our debugger, since the implementation is not yet complete. In this section, we look at the problem
of debugging from a historical perspective, then go on to discuss debuggers for modern functional
programming languages. In Section 2, we decide how to proceed – what our principles will be – and
give examples of how the interpreter might be used. Section 3 presents OCamli, an interpreter for OCaml
programs, and describes its architecture. We propose a possible interface for the debugger, based upon
OCaml syntax extensions. Finally, in Sections 4 and 5, we assess what has been done and discuss future
work.

1.1 The debugging problem

As early as in 1965, surprise was expressed that the shift from machine code to assembly language to
compiled languages to block-structured compiled languages, and the simultaneous vast improvements
in computing power and cost, had not led to as great a reduction in the frequency or severity of bugs.
Halpern, in “Computer programming: the debugging epoch opens” [22], writes “That tendency to err that
programmers have been noticed to share with other human beings has often been treated as if it were
an awkwardness attendant upon programming’s adolescence, which like acne would disappear with the
craft’s coming of age. It has proved otherwise . . . Many of us expected compiler languages to eliminate

http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/


2 Direct Interpretation of Functional Programs for Debugging

all bugs except those so glaring as to leap to the first fresh eye cast on the program. . . . An unfriendly
behaviorist studying programmers might conclude that we deliberately elaborate our tasks so as to
keep the bug rate constant.” [22]. Balzer, in his 1969 description of the Rand Corporation’s EXDAMS
debugger [2], explains that this surprise was widespread in the industry, at a time when more and more
large programs were being written in modern compiled languages: “With the advent of the higher-level
algebraic languages, the computer industry expected to be relieved of the detailed programming required
at the assembly-language level. This expectation has largely been realised. Many systems are now being
built in higher-level languages (most notably MULTICS). . . . However, the ability to debug programs
has advanced but little with the increased use of these high-level languages.” [2]. Hamlet, writing in
1983, gives a possible reason – the lack of attendant progress in debugging paradigms, suggesting that
high level languages might require different kinds of debugging tools rather than mere analogs of existing
ones: “Debugging techniques originated with low-level programming languages, where the memory dump
and interactive word-by-word examination of memory were the primary tools. ‘High-level’ debugging is
often no more than low-level techniques adapted to high-level languages.” [24]. It is fascinating to see
Halpern, quoted earlier, writing on the same topic forty years later, in 2005: “The most remarkable thing
about debugging today is how little it differs from debugging at the dawn of modern computing age, half a
century ago. . . . We’ve made little progress in debugging methods in half a century, with the result that
projects everywhere are bogged down because of buggy software.” [23]

Debuggers are still not as widely used as one might expect, even in difficult domains. In a paper on
debugging practices for complex legacy systems, Regelson and Anderson write: “The major item noted
by survey respondents was that few people really have learned to use the capabilities of their debuggers”
[35]. Debugging in industry is sporadic. Parnin and Orso [31], writing specifically about automated
debugging techniques, say: “Although potentially useful, most of these [debugging] techniques have yet to
demonstrate their practical effectiveness. One common limitation of existing approaches, for instance,
is their reliance on a set of strong assumptions on how developers behave when debugging.” [31]. This
limitation of a “reliance on a strong set of assumptions” as the key to understanding why people do
not use debuggers is a recurring theme. For example, Brady, in a paper about a debugging tool for
experienced users [3], explains that prior systems tried too hard to be approachable for novices, and the
verbosity of their commands alienated the experienced. He writes: “In a debugging program it is of prime
importance that the program be simple, flexible, and highly efficient to use.” [3]. Evans and Darley, in
their 1966 survey of online debugging systems, agree, explaining that when designing the interface to a
breakpoint-based debugger: “Here, as in other aspects of on-line work, convenience is critical.” [13].
Eisenstadt [12] lists three principles for the usability of a debugger:

• Allow full functionality at all times. Debugging environments that prevent access to
certain facilities make matters worse.

• Viewers should be provided for “key players” (any evaluable expression) rather than
just for “variables”.

• Provide a variety of navigation tools at different levels of granularity. [12]

Grishman [19] echoes the first principle, arguing that a debugger is at its best when it is at its most widely
applicable: “. . . to facilitate maintenance, the same program was to be usable in both batch and interactive
modes. Second, to facilitate distribution, the system had to be usable without any modification to the
operating system.” [19].

Let us now look at the debugging of programs written in functional languages.



John Whitington & Tom Ridge 3

1.2 Debugging functional programs

We should like to build a new debugger for the functional language OCaml, trying to learn lessons from
the history of debugging. Some of these lessons will no doubt be language-agnostic, but we expect
functional languages to have special requirements. And so, we should take a tour of existing debuggers
for functional languages and examine to what extent they are usable and used.

Debuggers for functional languages have often followed the pattern of those for imperative languages, even
though the mental model of evaluation as expression-rewriting is different. Concepts such as breakpoints
appear often, for example. Such debuggers come in several flavours. Some work by extending low-level
executable debuggers such as GDB or LLDB with extra routines to allow reconstruction of expressions,
some modify the program as it is being compiled, inserting information which can be used by a specialised
debugging program, and some work simply by providing macros or extra routines for debugging or
logging.

Of course, most functional programming languages have a Read-Eval-Print Loop, which is used not only
for learning and programmming-by-experimentation but also for light testing and debugging. Debuggers
for functional languages aim to provide facilities over and above the REPL. The limitation of the REPL-
as-debugger approach is that debugging often occurs due to an unexpected failure in production, rather
than something the programmer provokes deliberately (which we would probably call testing). It is worth
noting a practical point: in many languages, it is possible to build a REPL automatically with all libraries
and modules used in a project linked in, for example by typing make repl instead of just make – a boon
for usability.

Standard ML Refreshingly, debugging was considered, at least in passing, during the early stages
of the design of Standard ML, as Hall and O’Donnell [21] quote Milner [28] recalling: “ML does not
use lazy evaluation; it calls by value. This was decided for no other reason than inability to see the
consequences of lazy evaluation for debugging (remember that we wanted a language which we could
use rather than research into), and the interaction with the assignment statement, which we kept in the
language for reasons already mentioned.” [21][28]. However, the history of debugging tools for Standard
ML has not always followed this pattern. Wadler [47] records the story of Tolmach and Appel’s debugger
[42], which was deeply intertwined with the compiler and runtime of the SML/NJ Standard ML compiler.
As the SML/NJ implementation evolved, the debugger fell out of step, and is no longer available. Standard
ML developers “must return to older, more manual debugging methods” [47]. This is a reminder that
keeping a tool which is not part of the standard language toolchain up-to-date requires either frequent
modification, or a design which is fundamentally distanced from the language. Of course the spectrum of
effort required to update a debugger for a new version of the language is broad. It is likely any tool other
than a GDB-style one (operating solely on executables) will always require some updating with each new
toolchain release. One practical way to ensure this, if only socially, is to make it part of the toolchain.

The Poly/ML implementation of Standard ML contains an interactive debugger which operates not in a
separate environment, but within the usual REPL. For example, here we set a breakpoint on a list reversal
function, and ask for the values associated with some names:

Poly/ML 5.7.1 Release
> PolyML.Compiler.debug := true; initialise the debugger
val it = (): unit
> fun rev [] = []
# | rev (h::t) = rev t @ [h];



4 Direct Interpretation of Functional Programs for Debugging

val rev = fn: 'a list -> 'a list
> PolyML.Debug.breakIn "rev"; enable the debugger on our function
val it = (): unit
> rev [1, 2, 3, 4];
function:rev
debug > h; ask for values at the debugger prompt
val it = ?: 'a
debug > t;
val it = [?, ?, ?]: 'a list

Notice, though, that even our simple polymorphic list reversal prevents the Poly/ML debugger from
printing out the full details of the values we would like to see (one can give the type manually, but giving
the wrong type can crash Poly/ML, the documentation advises).

F# Microsoft’s F# [40] is an example of a functional language tightly integrated into (and shipped by
default with) a platform of frameworks, libraries and so on, based on the Common Language Runtime [27].
Thus, we would expect F# to be an interesting case when examining debugging functional programs in a
broadly imperative scenario. The official guidance on debugging F# [16] is, however, a little disheartening:

Debugging F# is similar to debugging any managed language, with a few exceptions:
• The Autos window does not display F# variables.
• Edit and Continue is not supported for F#. Editing F# code during a debugging session

is possible but should be avoided. Because code changes are not applied during the
debugging session, editing F# code during debugging will cause a mismatch between
the source code and the code being debugged.

• The debugger does not recognise F# expressions. To enter an expression in a debugger
window or a dialog box during F# debugging, you must translate the expression into
C# syntax. When you translate an F# expression into C#, make sure to remember that
C# uses == as the comparison operator for equality and that F# uses a single =. [16]

So the advantage of having a full IDE and a widely-used platform for the functional language to sit within
is tempered by compromised support for debugging, at least in this case.

OCaml We shall now look at typical methods used for debugging in the OCaml community, in addition
to the use of the REPL for debugging-like tasks which we have already highlighted.

Inserting printf statements is a popular method of informal debugging and logging in many languages
on many platforms. However, OCaml (unlike, for example, Haskell or Java), has no generic mechanism
for printing user-defined data types. So one is limited to printing only parts of the data – such as strings
or numbers, or forced to use custom printers, or limited to a library whose purpose is to provide custom
printers. Such restrictions can be painful. Nonetheless, inserting printf statements is an example of
a debugging mechanism which, whilst it may not always be effective, is at least available in almost all
circumstances. Perhaps it is this aspect of its usability which explains its enduring popularity.

The OCaml REPL has a very basic tracing mechanism. For example, here we define a simple function
and the tracer displays inputs to and outputs from the function as it runs:

# let rec f x = function 0 -> x | n -> f (succ x) (pred n);;
val f : int -> int -> int = <fun>
# #trace f;; enable tracing for our function
f is now traced.
# f 0 1;; invoke the function



John Whitington & Tom Ridge 5

f <-- 0
f --> <fun>
f* <-- 1
f <-- 1
f --> <fun>
f* <-- 0
f* --> 1
f* --> 1
- : int = 1

Too much has been lost in the compilation process to provide more information about the evaluation
process of the expressions. In particular, currying is not preserved. Values having polymorphic types
cannot be printed but appear as <poly>.

The OCamldebug program is supplied with OCaml. It operates only on compiled and linked bytecode
executables, not on native code executables or on source. The program must have been compiled with
debug information. In addition, the build process must make a bytecode executable by default, or in
addition to a native code one. The stand-out feature of OCamldebug is its ability to “time-travel” – that is
to jump backwards in a program’s execution as well as forwards. This is achieved by the use of the unix
fork mechanism. The intention is to make it easier to “catch the bug in the act”.

The program is run in a sequence of numbered steps. A step is something like a function application or a
conditional branch. One may: jump to a numbered step, forward or backward; print out the source code at
the current step; inspect a value from the source code; and set breakpoints based on source code positions.
As we shall see, there are some limitations. Let us take an example run. We start the debugger with the
program cpdf -version:

$ ocamldebug cpdf -version
OCaml Debugger

(ocd) run
Loading program... done.
cpdf Version 2.2
Time: 49260
Program exit.

We go to time zero, the beginning of the program. We have “time-travelled”.

(ocd) go 0
Time: 0
Beginning of program.

We step forward one step at a time. What we see is just module initialisation from OCaml’s built-in
Standard Library Pervasives.

(ocd) step
Time: 1 - pc: 7384 - module Pervasives
26 (Invalid_argument "index out of bounds")<|a|>
(ocd) step
Time: 2 - pc: 7552 - module Pervasives
164 float_of_bits 0x7F_F0_00_00_00_00_00_00L<|a|>

We move into code from the actual program (rather than module initialization) but we are still stuck in



6 Direct Interpretation of Functional Programs for Debugging

Standard Library code, there being no way to ask OCamldebug to show only steps involving the user’s
main program only.

(ocd) go 20000
Time: 20000 - pc: 136812 - module Arg
277 else <|b|>if s.[n] = ' ' then loop (n+1)
(ocd) step
Time: 20001 - pc: 136828 - module Arg
277 else if s.[n]<|a|> = ' ' then loop (n+1)
(ocd) step
Time: 20002 - pc: 136864 - module Arg
278 else <|b|>n

We print some values by giving their names:

(ocd) print n ask for value of n
n: int = 1
(ocd) go 20001
Time: 20001 - pc: 136828 - module Arg
277 else if s.[n]<|a|> = ' ' then loop (n+1)
(ocd) print s ask for value of s
s: string = " Display this list of options"
(ocd) print loop ask for value of loop
Unbound identifier loop

Some values cannot be found, or are opaque. We cannot alter the values within the debugging environment
and re-run the code.

OCamldebug can be used in conjunction with the Emacs text editor [38] to provide for a smoother
debugging experience via shortcuts for debugger commands, and the ability to jump to the source code
position of a breakpoint. It is also possible to install printers for user-defined data types, although the
manual cautions “For technical reasons, the debugger cannot call printing functions that reside in the
program being debugged.”

It is possible to use a debugger which works on executables (such as GDB) with OCaml, of course, but
facilities are limited. The semantic gap between the source text and the executable in the functional
model of computation is much wider than when debugging a language such as C. There is, however, an
extension [36] to GDB in development, which allows for limited printing out of OCaml values using the
type annotation files left behind during compilation.

Haskell In 2005, in a survey of the users of GHC, the most prominent Haskell compiler, “By far the
most common request was for a debugger” [26]. We shall describe three such debuggers briefly, and then
discuss the results of a similar survey undertaken ten years later, in 2015. The paper describing the current
debugger (shipped with GHC), says “The most prominent working debuggers for Haskell are Hat and
Hood.” [26], so we choose those to look at before examining the GHC debugger.

The Hat [6] debugger operates by recompiling programs in such a way that they dump a trace of the
whole execution to file as the program runs, whether it ends normally or with an error. After the program
has finished, the user runs tools which use the dumped data to explore the execution of the program. A
transformed program runs about a hundred times more slowly than the original. However, Hat allows
some modules (say the standard library) to be “trusted” and therefore untraced. This also enables Hat
users to debug programs which use third-party libraries which Hat has not, or cannot, recompile.



John Whitington & Tom Ridge 7

The tools provided include hat-observe to show the arguments with which each function is called,
hat-trail to explore computations backwards (to answer the question “Where did my bug come from?”),
and hat-explore to step through computations.

However, there are problems. The trace can be enormous, even for modest program runs. This, together
with the tracing slowdown, may restrict the debugging of programs which do not fail (or otherwise end)
quickly. Since Hat relies on transforming Haskell programs into ones which are semantically equivalent
but which also output trace data, it cannot be used with programs which make use of language extensions
Hat does not know about. Thus, one usage of a recent Haskell extension in a codebase can rule out Hat
as a debugger. To debug inside libraries, Hat also requires one to recompile all the libraries in tracing
variants, for use with Hat.

The Hood debugger [17] works by printing out data structures at various “observation points” in the
program, rather than using the stepping model of the typical imperative debugger. As with Hat, part of
the motivation for its design choices revolves around the extra complication of laziness – with Haskell’s
primitive Debug.trace, for example, the act of printing something out might change the evaluation order
of the program, and therefore suppress a bug, or at least complicate reasoning. Hood allows the user to
insert points at which observations about data structures are collected without altering the observable
behaviour of the program. The authors give examples of this method fitting particularly well with the
point-free style of functional programming, the observation point acting as a quasi-identity-function in
the middle of a chain of functions. For example, consumer . observe "intermediate" . producer

as the equivalent to consumer . producer but storing the debug information for this observation point
under the label intermediate, from where it may be retrieved later. The Hood tool itself can be used for
viewing such information.

The 2007 GHC debugger [26] was designed by looking at the flaws of Hat and Hood and trying to avoid
them. In particular, the authors list ways in which Hat and Hood are not always available – for example,
not able to be used on all programs, or being limited to one compiler, or requiring re-compilation of
libraries, or not being able to be used interactively, or not being able to print polymorphic values. They go
so far as to say “The debugger should work with everything and always be available, even if this means
sacrificing functionality”. We have seen this same observation about ‘availability’ or ‘accessibility’ as the
cornerstone of usability in our review of the literature in Section 1.1.

The debugger is used by loading the program into the REPL in the normal way, and using the extended
REPL commands provided by the debugger (for example :break) to control debugging. Values of
in-scope names may be inspected, and the program single-stepped.

An email survey [9] targeting 16000 Haskell users (with 1240 responses), commissioned by a commercial
Haskell contractor, asked respondents to fill in the blank in the following sentence: “Debugging and
Profiling: improvements in this would be ”. The results were Crucial 29%, Important 30%, Helpful
23%, Slight help 9%, No impact 4%. Total Crucial or Important 59%. A free response field was also
provided. The responses include “Debugging Haskell code is like groping in the dark with a hand tied
behind your back.”, “Debugging Haskell is still a pain for beginners and hampers adoption.”, “To be
honest I’m a bit ‘afraid’ of this part of Haskell.”, and “I would never be able to convince my coworkers
[to adopt Haskell] without decent debugging support.” This last answer alludes to a source of past
disillusionment about the apparent lack of progress of the art of programming despite vast improvements
in computing power, language design, and compiler tools. As the field advances, old problems are solved
only to be replaced with ones which could not have been conceived of unless we had already solved the



8 Direct Interpretation of Functional Programs for Debugging

old ones. Debugging is likely always to be needed, and unlikely to be eliminated in the way envisaged by
the early pioneers of computing.

Lisp Common Lisp [39] has a tracing function similar to the OCaml one we looked at earlier, although
there are more sophisticated facilities: the user can ask for certain values to be printed at each step, or
for tracing to begin or end only when a certain predicate related to the code holds. The tracer is itself
implemented as a LISP macro.

[1]> (TRACE rev) trace our function
;; Tracing function REV.
(REV)x
[3]> (rev '(1 2 3 4)) invoke it
1. Trace: (REV '(1 2 3 4))
2. Trace: (REV '(2 3 4))
...
3. Trace: REV ==> (4 3)
2. Trace: REV ==> (4 3 2)
1. Trace: REV ==> (4 3 2 1)
(4 3 2 1)

In a similar fashion to the OCaml tracer, only the inputs and outputs are shown, rather than a diagram of
the evaluation of the insides of the function.

Racket [14], a modern Scheme implementation, contains two debugging tools. The first is a breakpoint-
based debugger with an optional graphical interface. Panes show the stack and the values of local
names. When execution is paused at the start of an expression, an alternative value may be substituted
for an expression, for experimentation purposes. Similarly, when execution is paused at the end of an
expression’s evaluation, an alternative return value may be substituted. The second is an algebraic stepper,
which can show each step of the evaluation of the program in the source language:

Both the debugger and the algebraic stepper use Racket’s continuation marks scheme [7], which elaborates
the program source such that, when it is compiled, enough information remains on the stack to point to,
or even reconstruct the expression at the marked points. The debugger works for all Racket programs,
but does not show the actual state of the expression being evaluated. The algebraic stepper does show
the actual expression, but it only works for the small “Beginning student” and “Intermediate Student”
languages, not the full Racket language. A recent paper by Cong and Asai [8] uses somewhat similar
ideas to build an algebraic stepper for a small subset of Ocaml, for teaching purposes. One cannot debug
into other libraries unless the libraries themselves have been compiled with such an elaboration. This may
be mitigated somewhat by shipping an optional, elaborated version of the language’s standard libraries.
Such a stepping approach, nevertheless, appears to offer a compelling foundation for debugging functional
programs, if it could be freed from its limitations.



John Whitington & Tom Ridge 9

Summary We have explored some of the historical context of debugging as a persistent problem, and
surveyed existing solutions in the functional world. Now we shall propose an approach of our own, which
is rather surprising, but which we claim might form the foundation of a way of writing debuggers for
functional languages which is free of many of the disadvantages of previous solutions.

2 Approach

We intend to tackle the problem of debugging by directly interpreting the program, allowing the inter-
mediate steps of evaluation to be shown. When we say “directly interpreting”, we mean just that – a
completely naive step-by-step evaluation of the source code or AST without recourse to any kind of
transformation or compilation whether involving a bytecode or not (we make this clarification because the
REPL is often referred to as an interpreter though it does not work by interpretation.) Why interpretation?
Because it allows the program to be run without the loss of information inherent in the compilation process.
There is no reconstruction of information required, no lossy mapping back and forth between source
and executable. It fits the model of functional programming as evaluation by reducing an expression to
a value, rather than making the programmer think imperatively. This choice will, we hope, allow for a
design which sweeps away many of the disadvantages of existing solutions, replacing them with one big
disadvantage – that interpretation is extremely slow. We shall then work to mitigate that disadvantage to
arrive at a usable debugger.

Before getting too deeply into this line of thought, let us begin with an example to illustrate the concept
before returning to our argument, and to the specifics of our implementation.

2.1 An example

As is traditional, we consider a program for calculating the factorial of a positive number:

let rec factorial n =
if n = 1 then 1 else n * factorial (n - 1)

in
factorial 4

The upper portion of Figure 1 shows a naive visualization of the evaluation of this program. This is
certainly not how we would write such an evaluation on paper. Although the evaluation shown is self-
contained in the sense that each line of it is a valid program (which might seem a useful property) it is
hard to see what is going on. It is large, both in width (how long the expression becomes) and length
(how many lines are needed). Writing each evaluation step over multiple lines as we did with the original
program above would not only increase the length, but make it difficult to visually compare adjacent lines.
We must reduce the amount of information shown, even in this simple case.

Look now at the lower part of Figure 1, showing the output of our prototype system. We removed the
definition of the factorial function itself (since it is recursive, its name will appear in the expression
anyway.) We avoided printing any reduction step which leads to an expression such as if false or if
true. We have not shown the intermediate steps of simple arithmetic which reduce 4 * (3 * (2 * 1)) to
24. We have removed trivial arithmetic (e.g. subtracting one), even when it involves variable names, such
as reducing n - 1 to 3 directly rather than via 4 - 1. We have removed let bindings which apply to the



10
D

irectInterpretation
ofFunctionalProgram

s
forD

ebugging

let rec factorial n = if n = 1 then 1 else n * factorial (n - 1) in factorial 4
=> let rec factorial n = if n = 1 then 1 else n * factorial (n - 1) in let n = 4 in if n = 1 then 1 else n * factorial (n - 1)
=> let rec factorial n = if n = 1 then 1 else n * factorial (n - 1) in let n = 4 in if false then 1 else n * factorial (n - 1)
=> let rec factorial n = if n = 1 then 1 else n * factorial (n - 1) in let n = 4 in n * factorial (n - 1)
=> let rec factorial n = if n = 1 then 1 else n * factorial (n - 1) in let n = 4 in 4 * factorial (n - 1)
=> let rec factorial n = if n = 1 then 1 else n * factorial (n - 1) in 4 * factorial (4 - 1)
=> let rec factorial n = if n = 1 then 1 else n * factorial (n - 1) in 4 * factorial 3
=> let rec factorial n = if n = 1 then 1 else n * factorial (n - 1) in 4 * (let n = 3 in if n = 1 then 1 else n * factorial (n - 1))
=> let rec factorial n = if n = 1 then 1 else n * factorial (n - 1) in 4 * (let n = 3 in if false then 1 else n * factorial (n - 1))
=> let rec factorial n = if n = 1 then 1 else n * factorial (n - 1) in 4 * (let n = 3 in n * factorial (n - 1))
=> let rec factorial n = if n = 1 then 1 else n * factorial (n - 1) in 4 * (let n = 3 in 3 * factorial (n - 1))
=> let rec factorial n = if n = 1 then 1 else n * factorial (n - 1) in 4 * (3 * factorial (3 - 1))
=> let rec factorial n = if n = 1 then 1 else n * factorial (n - 1) in 4 * (3 * factorial 2)
=> let rec factorial n = if n = 1 then 1 else n * factorial (n - 1) in 4 * (3 * (let n = 2 in if n = 1 then 1 else n * factorial (n - 1)))
=> let rec factorial n = if n = 1 then 1 else n * factorial (n - 1) in 4 * (3 * (let n = 2 in if false then 1 else n * factorial (n - 1)))
=> let rec factorial n = if n = 1 then 1 else n * factorial (n - 1) in 4 * (3 * (let n = 2 in n * factorial (n - 1)))
=> let rec factorial n = if n = 1 then 1 else n * factorial (n - 1) in 4 * (3 * (let n = 2 in 2 * factorial (n - 1)))
=> let rec factorial n = if n = 1 then 1 else n * factorial (n - 1) in 4 * (3 * (2 * factorial (2 - 1)))
=> let rec factorial n = if n = 1 then 1 else n * factorial (n - 1) in 4 * (3 * (2 * factorial 1))
=> let rec factorial n = if n = 1 then 1 else n * factorial (n - 1) in 4 * (3 * (2 * (let n = 1 in if n = 1 then 1 else n * factorial (n - 1))))
=> let rec factorial n = if n = 1 then 1 else n * factorial (n - 1) in 4 * (3 * (2 * (let n = 1 in if true then 1 else n * factorial (n - 1))))
=> let rec factorial n = if n = 1 then 1 else n * factorial (n - 1) in 4 * (3 * (2 * 1))
=> let rec factorial n = if n = 1 then 1 else n * factorial (n - 1) in 4 * (3 * 2)
=> let rec factorial n = if n = 1 then 1 else n * factorial (n - 1) in 4 * 6
=> let rec factorial n = if n = 1 then 1 else n * factorial (n - 1) in 24
=> 24

factorial 4
n = 4 => if n = 1 then 1 else n * factorial (n - 1)
n = 4 => n * factorial (n - 1)

=> 4 * factorial 3
n = 3 => 4 * (if n = 1 then 1 else n * factorial (n - 1))
n = 3 => 4 * (n * factorial (n - 1))

=> 4 * (3 * factorial 2)
n = 2 => 4 * (3 * (if n = 1 then 1 else n * factorial (n - 1)))
n = 2 => 4 * (3 * (n * factorial (n - 1)))

=> 4 * (3 * (2 * factorial 1))
n = 1 => 4 * (3 * (2 * (if n = 1 then 1 else n * factorial (n - 1))))

=> 4 * (3 * (2 * 1))
=>* 24

Figure 1. A naive rendering of the evaluation of factorial 4 showing each step of the evaluation, followed by an automatically reduced one,
eliding a) parts of the evaluation of the if construct; b) the definition of a recursive function mentioned in the expression; c) the final portion of
arithmetic; and d) trivial operations such as 3 - 1. In addition, let expressions unique in the whole expression are moved to the left, and basic
syntax highlighting has been used. The expression to be reduced in each step has been underlined.



John Whitington & Tom Ridge 11

whole expression to the left hand side of the => arrow to avoid too many let n = ... instances making
the output too wide. We have used simple syntax highlighting in the form of bold for keywords. Finally,
we have underlined the expression to be reduced at each step. All changes have been made automatically.
Each step is no longer a valid OCaml program, but the increase in readability is significant. Clearly, for
larger programs, such elision will be even more important, since the focus needs to be on the currently-
evaluating subexpression of a potentially huge expression representing the whole program. Note that all
the intervening steps of the computation are performed, but certain lines are not printed. This means that
the finer details of the computation may be inspected upon demand.

In the program trace we have already exhibited, it is clear that for realistic programs, the program trace
(both its width and its length) may be significant. This issue is discussed in some detail by Taylor [41] and
Pajera-Flores [30]. A practical solution, we claim, must involve providing ways of a) eliding information
within a single step – reducing the width; b) eliding whole steps – reducing the length; c) searching the
resultant trace, if it is still too large to spot the bug; and d) moving backward and forward through the
trace to connect cause and effect in the computation.

2.2 Design choices

We choose to build a debugger which puts the notion of accessibility first (it is the core of usability), and
everything else second. We claim that, without such universal availability, our debugger would be added
to the growing pile of debuggers for functional languages which lie unused. And so this extremism is, in
fact, in the service of practicality.

We can contrast the accessibility of a low-level debugger (such as GDB) which allows any executable
to be debugged (assuming it was compiled with debug information enabled) to the much more limited
accessibility of various high-level debuggers. We need to bridge this gap. So we should define precisely
what trade-offs we are willing to accept. We can say that we will allow the following leeway in our
extremism: 1) Just like GDB, we will insist upon the executable being compiled with a special flag. In fact,
the requirement is rather stronger than GDB, since GDB is of some use on an executable not so compiled.
2) We shall not make any attempt to provide for the debugging of code from other languages (so, for
example, C code linked into a primarily-OCaml executable will not be debuggable). But such executables
will run properly. This means that, for example, if one suspects a bug exhibited in an OCaml executable is
really a bug in the OCaml compiler or runtime, debugging it may require GDB in addition to our debugger.
3) There will doubtless be small ways in which the interpreter differs, whilst still being equivalent given
the OCaml semantics. For example, its exact limits for stack overflows on non-tail-recursive code may be
different, or the order of execution of threads may be different. This might mean that some bugs go away
when switching to the interpreted version of OCaml. This might damage reproducibility when debugging
certain kinds of low-level problems.

Notwithstanding these small things, we believe that this is the sensible approach for a high-level debugger.
Let us list some of our principal aims here, to remind ourselves. We would like our eventual debugger
(a) to be useable with any build system; (b) to work with mixed C/OCaml code; (c) to be able to debug
libraries, not just the programmer’s own code; (d) to be easy to keep in sync with the OCaml toolchain,
so a new version can be released with each OCaml version; (e) to require minimal patches to the target
toolchain; and (f) to be suitable for debugging the development of the OCaml compiler itself, and similar
complex code.



12 Direct Interpretation of Functional Programs for Debugging

A debugger which embodies these two kinds of requirement (negative and positive) ought to have the
spirit of accessibility and so fulfil our needs.

2.3 Correctness and Maintainence

How will we know that the step-by-step interpreter is correct? Correctness is the major concern in any
implementation of a programming language (which is why certified compilers have become such a hot
topic), but we have a special extra concern. We must make sure that the interpreter matches the semantics
of the native code OCaml compiler. It is no use trying to debug a program, only to find that the bug
changes or disappears when using the interpreter. This concern exists also in the core OCaml distribution,
unusually, since there are two compilers – bytecode and native code.

Our interpreter shares the front end with the bytecode and native code compilers, so we need not worry
about correctness there – its behaviour should match exactly the bytecode and native code behaviour.
In the actual evaluation, though, we must ensure the semantics of the language are obeyed to the same
standard as in the compiled implementations. Formal proof will not work. There is no formal semantics
of OCaml to prove adherence to and, in any event, without also formally proving the OCaml compiler, we
cannot show the two are semantically equivalent. The OCaml distribution does come, however, with a
large test suite, which we will use to test the interpreter. How do we know that it will continue to work
when the OCaml compiler is updated? Languages change, and new language features are added. Of
course, the best solution would be to eventually have our small-step interpreter included in the OCaml
distribution itself. The reason for doing so would be social, not technical – it would ensure that for each
release the interpreter would be updated along with the compilers. It is not unusual for debuggers to be
included in the core distribution of a language. Failing such an inclusion, the debugger will have to be
updated for each major release of OCaml. But these changes are likely to be rather easier than one might
expect, due to the sharing of the front end. And some, such as the changes to typechecking internals in
the front end which frequently appear in OCaml compiler change logs, will require no changes to the
interpreter.

There is a marked difference in complexity between writing a simple big-step evaluator for an abstract
syntax tree and its small-step counterpart. Recent work by Cong and Asai suggests a scheme whereby
one may “implement a stepper concisely by writing an evaluator that is close to a standard big-step
interpreter” [8], so there is reason to believe that this difficulty may also be overcome.

2.4 Functional program visualization

This paper is concerned principally with the overall shape of our approach and the technical details
of OCamli, our interpreter for OCaml. However, we must also discuss the actual mechanisms for the
visualisation of programs as shown in our factorial example. There is plenty of literature on this in the
field of software visualization, as well as some earlier work in the field of functional languages. We take a
brief review now (the following paragraphs appear in similar form in our earlier paper [48]).

Two useful surveys [45] [46] give a general overview of recent developments in this area, the first specific
to functional programming, the second with wider scope. A very broad introduction [33] provides
background. A comprehensive survey [37] of education systems for program visualization is useful too.
We pick out a few recent systems for further discussion.



John Whitington & Tom Ridge 13

The WinHIPE system [30] is a recent incarnation of these ideas for the HOPE [4] language. It uses a step-
by-step evaluation system, and explicitly addresses the problems of scale by elision of information and a
focusing mechanism. The emphasis, however, is on graphical (tree-based) representations, an approach
we shall not take, being of the belief that trees can often be, in fact, harder to read than well-pretty-printed
program representations. The Visual Miranda Machine [1] provides a trace of the evaluation of a lazy
functional program, together with a commentary showing the reason for choosing each evaluation step.
There is a discussion of granularity, taking the example of the “list comprehension” language feature.
DrScheme [15] provides, amongst many other facilities, an “algebraic stepper” for the Scheme language
that can print out steps of evaluation. The stepper, however, supports only a subset of the language.
The implementation is interesting, though – it reuses some of the underlying Scheme implementation to
ensure equivalent semantics. Touretsky describes a LISP-based system [43] that produces mainly textual
traces, but with some use of graphical elements to indicate the different scoping mechanisms peculiar to
LISP. The presentation of ZStep95 [44] begins by noting that debugging is, essentially, a human interface
problem. The authors concentrate on the concept of immediacy (temporal, spatial, and so on), which they
see as essential, and exhibit a stepping debugger for a functional language which can go back and forth
through time. Another approach to this problem is as a special case of the more general concept of a
calculator [34] [18], showing how it pertains to various logical systems with a mathematical basis, not
just functional programs. Prospero [41] is a more fully-developed system, again for a lazy language. It
includes methods for filtering the evaluation trace to elide information and a careful discussion of usability
issues. A recent system for visualizing the evaluation of JavaScript, including its functional elements,
is JSExplain [5]. It uses a reference interpreter derived from the language specification itself and so, in
addition to its uses for teaching, it acts as a debugger for the specification of the JavaScript language itself.

These systems are mostly concerned with program visualization for teaching; we wish to bias ourselves
towards the task of general debugging, hoping that some of the educational uses will be subsumed by
it. The authors of DrScheme [15] urge caution here, choosing instead to build a “tower” of syntactically
restrictive variants of Scheme specifically for educational purposes. They say that, due to the fact that so
many sequences of characters are syntactically valid in Scheme, error messages are less confusing when
the dialect is restricted – we would prefer to avoid this in the name of universality.

It is worth pointing out that much research in software visualization concerns overtly graphical approaches.
We take a simpler line, sticking to pretty-printing. We claim that the most important aspect of a successful
visualization is elision – reducing the information visible to just what is required so that large datasets may
be understood easily. Programmers are used to seeing their program as text, and visualizing its evaluation
as, for example, a graphical tree structure, is less useful for debugging large programs (it can be useful, of
course, for visualizing program source code structure as opposed to evaluation traces).

3 OCamli: an interpreter for OCaml

This section presents the technical development and practical use of the prototype OCamli interpreter [29]
for OCaml, considering both the method of step-by-step evaluation, and the heuristics used to make for
concise, readable output. It does not support the whole language, but can load almost all of the OCaml
Standard Library, and run its initialisation. It is the foundation upon which our eventual debugger will be
built. Presently, it has a prototype command line interface which, on its own, is suitable for debugging
some little OCaml programs.



14 Direct Interpretation of Functional Programs for Debugging

We should like to have a command ocamli so we may write ocamli test.ml and the program will be
interpreted, functioning in the same way as it would if compiled and then run. We will allow the flag
-show to show the final result of the evaluation of the program:

$ ocamli -show test.ml
7

Here, the contents of test.ml is simply “1 + 2 * 3”. The flag -show-all will show all the stages of
computation:

$ ocamli -show-all test.ml
1 + 2 * 3
1 + 6
7

Such a program will need to read the source code, convert it to a representation suitable for direct
interpretation, interpret it in a fashion which allows for the printing of each individual step, and print those
steps out in a readable way.

3.1 A new representation for OCaml programs

It is possible to produce a step-by-step interpreter for OCaml which operates directly upon the parse tree
data type exposed by the compiler-libs library (which is the OCaml toolchain’s library form). However,
the data type is not ideal. It holds much information which is not needed for interpretation, complicating
pattern matching. At each step, we must then reconstruct such extra information to ensure that it is a valid
parse tree again. A very early version of our interpreter was constructed using this method. The intent was
to avoid introducing a new datatype (with maintenance issues), and to enable use of the existing OCaml
prettyprinter. However, it quickly became apparent that the disadvantages outweighed the advantages.
Consider, for example, the following code to add two integers, from a very early version of OCamli:

| Pexp_apply (expr, args) ->
if List.for_all (fun (_, arg) -> is_value arg) args then if all arguments are values
begin match expr.pexp_desc with
| Pexp_ident {txt = Longident.Lident (("*" | "/" | "+" | "-") as op)} -> if an integer op

begin match args with
[(_, {pexp_desc = Pexp_constant (Const_int a)});
(_, {pexp_desc = Pexp_constant (Const_int b)})] -> extract integer values
let result = calculate a b op in

{e with pexp_desc = Pexp_constant (Const_int result)} rebuild parse tree node
| _ -> malformed __LOC__

end
end

else
(cases where one or more arguments not yet values)

We have to check each item in the list of things to be applied is a value, match against strings representing
operators, and deal with many nested records, taking them apart and building them back up once we have
evaluated a single step. Instead, we should like to be able to just write:

| Op (op, Int x, Int y) -> Int (calculate op x y)



John Whitington & Tom Ridge 15

This is the aim of our new representation for OCaml programs (we will not call it a representation of
OCaml parse trees or Abstract Syntax Trees, because the information it must contain is different.) We call
it TinyOCaml. Here is part of the main type (we skip most of it for brevity, together with some of the types
to which it refers). Unlike the OCaml parse tree datatype, which is a complicated set of mutually-recursive
datatype definitions, we have only a few here.

type t =
Unit atomic types

| Int of int
| Bool of bool
| Float of float
| Record of (string * t ref) list record
| Tuple of t list tuple
| Cons of (t * t) list
| Nil
| Array of t array array
| Constr of int * string * t option user-defined data type constructor
| Fun of (label * pattern * t * env) function
| Function of (case list * env) function with pattern-match
| Var of string variable
| Op of (op * t * t) binary operator
| Cmp of (cmp * t * t) comparison operator
| If of (t * t * t option) conditional statement
| Let of (bool * binding list * t) let-binding
| LetDef of (bool * binding list) let-binding structure item
| TypeDef of (bool * Parsetree.type_declaration list) user-defined type definition
| App of (t * t) function application
| Seq of (t * t) imperative ; operator
| While of (t * t * t * t) while loop
| For of (string * t * forkind * t * t * t) for loop
| Raise of (string * t option) raise exception
| Match of (t * case list) pattern match
| TryWith of (t * case list) try. . .with block
| ExceptionDef of (string * Parsetree.constructor_arguments) exception definition
| CallBuiltIn of built-in primitive

(typ option * string * t list * (env -> t list -> t))
| Struct of (bool * t list) module implementation
| Sig of t list module signature

Let us look again at an example program, and see its evaluation as it may be printed on screen by OCamli:

1 + 2 > 3 + 4
=> 1 + 2 > 7
=> 3 > 7
=> false

And here is what is going on inside OCamli – much simpler than directly manipulating the OCaml
parsetree itself:

Cmp (GT, Op (Add, Int 1, Int 2), Op (Add, Int 3, Int 4))
=> Cmp (GT, Op (Add, Int 1, Int 2), Int 7)
=> Cmp (GT, Int 3, Int 7)
=> Bool false

We shall now consider how to convert the OCaml parse tree into our new type for OCaml programs.



16 Direct Interpretation of Functional Programs for Debugging

3.2 Conversion to and from real OCaml programs

Consider the following extract of the of_real_ocaml reader for converting an OCaml parse tree into the
TinyOCaml representation:

| Pexp_construct ({txt = Lident "[]"}, _) -> Nil
| Pexp_construct ({txt = Lident "::"}, Some ({pexp_desc = Pexp_tuple [e; e']})) ->

Cons (of_real_ocaml env e, of_real_ocaml env e')

This deals with the standard OCaml list syntax. Similar code deals with each other part of the OCaml
syntax. Closure conversion is done at the same time (this is the env argument above), since it is convenient
and avoids another pass.

Converting the other way (from TinyOCaml to OCaml’s parse tree type) can be useful too, for example if
we wish to use the built-in OCaml prettyprinter:

| Unit -> Pexp_construct ({txt = Longident.Lident "()"; loc = Location.none}, None)
| Int i -> Pexp_constant (Pconst_integer (string_of_int i, None))
| String s -> Pexp_constant (Pconst_string (s, None))
| Bool b ->

Pexp_construct
({txt = Longident.Lident (string_of_bool b); loc = Location.none},

None)

Note again the stark difference in verbosity between our type Tinyocaml.t (to the left of each arrow) and
OCaml’s parse tree type (to the right of each arrow).

3.3 Evaluating expressions

For this proof-of-concept, a very simple interpreter has been produced. It has no pretensions towards
performance, either by preserving space and time efficiency vis-a-vis the same program compiled and
executed, or with regard to constant overheads. Its job is to provide a minimal working example for
experimentation (remember our mantra: accessibility first, everything else, including speed, second).

Evaluation strategy To evaluate a step of a program (that is, something of type Tinyocaml.t), we must
first determine if the program is a value. If it is, there is no evaluation to be done. If not, we find the
reducible expression, following the OCaml order of evaluation (to the extent that OCaml specifies the
order). We perform one step of evaluation only. This new expression may now be returned for printing,
and we continue with the next step.

Let us look at a simple example, comparing with a traditional evaluator (whose job is to evaluate down to
a value in one continuous operation). We choose the short-circuiting boolean conjunction operator &&.
Here is a snippet from an all-at-once interpreter:

let rec eval = function
| And (a, b) ->

match eval a with
| Bool false -> Bool false
| Bool true -> eval b



John Whitington & Tom Ridge 17

We evaluate the left hand side a to a Tinyocaml.t representing a boolean (either Bool true or Bool
false). If it is Bool false, this is the result. If it is Bool true, the code evaluates the right hand side to
a value, and returns it. Contrast with the following, which evaluates just a single step:

let rec eval_step = function
| And (Bool false, _) -> Bool false
| And (Bool true, Bool b) -> Bool b
| And (Bool true, b) -> eval_step b
| And (a, b) -> And (eval_step a, b)

The first line of the pattern match in the step-by-step example is used when the left hand side has already
been fully evaluated and is false: this is the short circuit. The second deals with a fully-evaluated true left
hand side, and a fully evaluated right hand side. The third is the same as the second, but for a right hand
side not yet fully evaluated: we have found the step which requires evaluation. The fourth and last is for
an unevaluated left hand side: we evaluate the left hand side one step and leave the right hand side alone.
By similar mechanisms it is possible to write a step-by-step evaluator for each other part of the language.
We consider some of the more interesting ones now by way of further example.

Imperative programs Whilst OCaml is a functional language first, there is occasional use of imperative
features, and we need to display them in a way which fits in. Consider the evaluation of the OCaml for
construct. When compiled, the following piece of code will print 12345:

for y = 0 + 1 to 6 - 1 do print_int y done

But how do we show it? It can be treated as an expression:

for y = 0 + 1 to 6 - 1 do print_int y done
=> for y = 1 to 6 - 1 do print_int y done
=> for y = 1 to 5 do print_int y done
1=> for y = 2 to 5 do print_int y done
2=> for y = 3 to 5 do print_int y done
3=> for y = 4 to 5 do print_int y done
4=> for y = 5 to 5 do print_int y done
5=> for y = 6 to 5 do print_int y done
=> ()

Helpfully, the semantics of OCaml are such that for y = 6 to 5 do ... done is legal and does not
execute the body, so we have a proper terminating condition. How is this implemented? The For

constructor of the Tinyocaml.t data type looks like this:

For of string * t * forkind * t * t * t

Our example would be represented like this:

For ("y",
Op (Add, Int 0, Int 1),
UpTo,
Op (Sub, Int 6, Int 1),
App (Var "print_int", Var "y"),
App (Var "print_int", Var "y"))

We need two copies of the body, so that one may be evaluated step-by-step, and then, when it has been
reduced to a value, the spare copy can be moved into place, and we go round again. Here are all the cases
needed for step-by-step evaluation of the for construct:



18 Direct Interpretation of Functional Programs for Debugging

| For (v, e, ud, e', e'', copy) when not (is_value e) -> evaluate from part
For (v, eval env e, ud, e', e'', copy)

| For (v, e, ud, e', e'', copy) when not (is_value e') -> evaluate to part
For (v, e, ud, eval env e', e'', copy)

| For (_, Int x, UpTo, Int y, _, _) when x > y -> Unit end condition
| For (_, Int x, DownTo, Int y, _, _) when y > x -> Unit end condition
| For (v, Int x, ud, e', e'', copy) when is_value e'' -> advance the for loop using the copy

For (v, Int (x + 1), ud, e', copy, copy)
| For (v, x, ud, e', e'', copy) -> evaluate the body

For (v, x, ud, e', eval (EnvBinding (false, ref [(PatVar v, x)])::env) e'', copy)

Note the final case, where the variable is bound for the evaluation. The treatment of while is similar. Now
consider how to deal with another imperative construct: the reference. A reference in OCaml is a mutable
cell containing a value. Here is a simple imperative program using a reference:

let x = ref 0 in x := !x + 1
=> let x = {contents = 0} in x := !x + 1
=> let x = {contents = 0} in x := 0 + 1
=> let x = {contents = 0} in x := 1
=> let x = {contents = 1} in ()
=> ()

Note that, even though the new value of the reference is lost in the final expression (), it is visible in the
penultimate step, which is good enough. OCamli can emulate the low-level primitives used to implement
some of OCaml’s basic language features. When we opt to show the low-level primitives involved in the
use of references, we see a somewhat longer version:

let x = ref 0 in x := (!x + 1)
=> let x = let x = 0 in <<%makemutable x>> in x := (!x + 1)
=> let x = {contents = 0} in x := (!x + 1)
=> let x = {contents = 0} in {contents = 0} := (!x + 1)
=> let x = {contents = 0} in (let x = {contents = 0} in fun y -> <<%setfield0 x y>>) (!x + 1)
=> (fun y -> let x = {contents = 0} in <<%setfield0 x y>>) (!{contents = 0} + 1)
=> (fun y -> let x = {contents = 0} in <<%setfield0 x y>>)

((let x = {contents = 0} in <<%field0 x>>) + 1)
=> (fun y -> let x = {contents = 0} in <<%setfield0 x y>>) (0 + 1)
=> (fun y -> let x = {contents = 0} in <<%setfield0 x y>>) 1
=> let y = 1 in let x = {contents = 0} in <<%setfield0 x y>>
=> ()

Most users will not want this longer output by default, but it is helpful when we wish to see, for example,
exactly what I/O calls are triggered by Standard Library functions.

Currying When we teach functional programming we often say “every function only has one argument”
but really, except in cases of partial application, programmers think of curried functions as a single
function of multiple arguments. And how the programmer thinks is how the debugger must behave.
Consider the default evaluation of (fun x y -> x + y) 4 5:

(fun x y -> x + y) 4 5
=> (let x = 4 in fun y -> x + y) 5
=> (fun y -> let x = 4 in x + y) 5
=> let y = 5 in let x = 4 in x + y
=> let y = 5 in 4 + y
=> 4 + 5
=> 9



John Whitington & Tom Ridge 19

We always print fun x y -> instead of fun x -> fun y ->, since they are indistinguishable in the OCaml
parse tree. There are a small number of places where semantically equivalent syntactic forms are not
distinguished like this, and we would want eventually to modify the OCaml parser to retain information
about the original form.

Returning to currying, the evaluation above is excessively verbose. When the -fast-curry option is
added to the command line, the arguments will be applied at once:

(fun x y -> x + y) 4 5
=> let x = 4 in let y = 5 in x + y
=> let y = 5 in 4 + y
=> 4 + 5
=> 9

This involves a more complicated matching on the program to identify all the arguments which can
be applied. It is an example of the requirements of the visualization driving the implementation of the
interpreter’s evaluation model. In fact, combined with another option -side-lets (which pulls out
let-bindings to the side), we get an evaluation which is better still:

(fun x y -> x + y) 4 5
x = 4 y = 5 => x + y

y = 5 => 4 + y
=> 4 + 5
=> 9

In the future, we could go further, and do away with the step-by-step lookup of variables, imagining the
optimal visualisation:

(fun x y -> x + y) 4 5
x = 4 y = 5 => x + y

=> 4 + 5
=> 9

or even:

(fun x y -> x + y) 4 5
=> 4 + 5
=> 9

This is perhaps what we might write if we were to do this on paper – when we write such evaluations
informally we naturally skip “obvious” steps. It is the same when doing mathematics. We can see that
most of the job of improving upon the naive visualization consists of removing information, rather than
adding it.

Exceptions As one would expect, exceptions (which interrupt the flow of evaluation) require a similar
mechanism inside an interpreter. The complication of a step-by-step interpreter is that exceptions must be
modelled in a step-by-step way too: we cannot let uncaught raises cascade all at once. The solution to this is
to model exceptions in two ways: as a special Tinyocaml.t constructor Raise and using actual exceptions.
Here is the exception definition we will use, which represents, for example, the result of evaluating raise

(Failure "broken") as ExceptionRaised ("Failure", Some (String "broken")):

exception ExceptionRaised of string * Tinyocaml.t option



20 Direct Interpretation of Functional Programs for Debugging

Here is the Tinyocaml.t constructor used to represent exceptions which need to be raised:

| Raise of string * Tinyocaml.t option

See how it mirrors the exception definition above. Now, let us consider the case of dividing two numbers,
where the second may be zero. Here is the code from the interpreter:

| Op (op, Int a, Int b) ->
begin try Int (calc op a b) with
Division_by_zero -> Raise ("Division_by_zero", None)

end

We use OCaml exception handling to check for Division_by_zero in the calc function, and if we see
it, we build the Raise constructor as the result of evaluating this expression one step. This freezes the
exception. What happens when, in the next step of evaluation, this Raise is found?

| Raise (e, payload) -> payload is the data carried with the exception
match payload with
| Some x when not (is_value x) ->

Raise (e, Some (eval_step env x)) if payload not a value, evaluate one step
| _ ->

raise (ExceptionRaised (e, payload)) otherwise, the exception may be raised

We may need to evaluate the expression in the Raise one step if it is not a value (it might be raise

(Fail (1 + 2)), for example). Thus, the Raise may take several steps to be processed. If it is a value,
though, we can raise the actual exception. This will be caught in the evaluator, and mirrors the effect of
the exception occurring in a compiled program. Here is code for the try ... with construct:

| TryWith (e, cases) ->
if is_value e then e else if body a value, return

begin try TryWith (eval_step env e, cases) with evaluate body one step
ExceptionRaised (x, payload) -> if this step caused an exception
match eval_match_exception env x payload cases with see if it matches a case
| FailedToMatch -> Raise (x, payload) if not, recreate the raise node
| Matched e' -> e' otherwise, return the body of the matched case

end

If the exception is not surrounded by a try ... with, it is not caught, and so is printed at the top level
and the interpreter exits:

1 + 1 / (1 - 1)
=> 1 + 1 / 0
=> 1 + raise Division_by_zero
Exception: Division_by_zero.

Let us add a try ... with:

try 1 + 1 / (1 - 1) with Division_by_zero -> 2 + 2
=> try 1 + 1 / 0 with Division_by_zero -> 2 + 2
=> try 1 + raise Division_by_zero with Division_by_zero -> 2 + 2
=> 2 + 2
=> 4

Now we can see the whole process. As an improvement, we might like to annotate the penultimate step to
indicate which expression matched.



John Whitington & Tom Ridge 21

Pattern matching How can we visualize pattern matching, one of the most widely-used, and praised,
features of functional programming? Do we show the whole pattern, then jump to the right hand side of
the chosen match? Do we show how the match matches? Consider an example:

match 1 + 2 with 4 -> 0 | 3 -> 1 + 2 | _ -> 1
=> match 3 with 4 -> 0 | 3 -> 1 + 2 | _ -> 1
=> match 3 with 3 -> 1 + 2 | _ -> 1
=> 1 + 2
=> 3

In this method of visualisation, we simply show the whole match expression with all its cases, and each
time a case does not match, we drop it from the front. As an option, in the future, we will allow the
skipping of this process, and show just the case that matched. Functional programmers are good at spotting
which case will be taken, and identifying when an unexpected one has been taken, signifying a bug.

Summary We now have a function which, given a program, can evaluate it one step. By calling the
function repeatedly, feeding its own output back in as the next input, the program can be evaluated
completely, step-by-step. With an appropriate pretty-printer, each step may be printed out. Sometimes the
requirements of good visualization force changes to the evaluation method itself, changing the number or
kind of steps.

3.4 Dealing with size by elision

This section concerns the important task of making the output readable (we discuss searching, which
also reduces the output, in Section 3.6). So, what remains? Three things: 1) the showing or eliding of
whole steps for things like simple arithmetic and variable lookups; 2) the hiding or showing of parts of
the expression at each step; and 3) the default heuristics for eliding parts of individual expressions (for
example, the internals of built-in functions).

For our first example, we shall consider how to automatically abridge the following arithmetic evaluation,
of a type which frequently occurs at the end of a non-tail-recursive function application:

1 * (2 * (3 * 4))
=> 1 * (2 * 12)
=> 1 * 24
=> 24

We wish to remove the middle two steps, leaving just:

1 * (2 * (3 * 4))
=> 24

This can be done by a mechanism we call peeking.

Peeking In order to decide whether to show the current state, it is sometimes important to know the next
state, and to remember the previous state. But how can we know the next state without evaluating it? One
way, of course, would be to evaluate the whole program and print out its steps of execution offline. But we
may wish to stop evaluation based on what is about to happen, and we cannot do this with a real running
program with side effects, since we cannot roll back a side effect such as a network communication with a
third party.



22 Direct Interpretation of Functional Programs for Debugging

The solution is to add to the step-by-step evaluator the notion of peeking. In this mode, the evaluator
identifies the reducible expression, but does not evaluate it. The calling function can then interrogate the
interpreter to ask “What kind of operation would have been performed?”. Presently, the answer is one of a
short list, giving just enough information to provide for some of the elisions the OCamli prototype can
perform:

type last_op =
Arith simple arithmetic

| Boolean &&, ||
| Comparison comparison operators
| IfBool if true, if false
| InsideBuiltIn evaluation inside an external piece of code
| VarLookup variable lookup

In our example, we print the step if and only if a) the next state is a value or b) the current state is a value
or c) Arith is not present for the previous state or d) Arith is not present for the next state. These four
conditions, taken together, elide just enough steps of the arithmetic, but do not remove information we
want to see. Similar conditions have been devised for the other kinds of elision listed in the last_op type.

Eliding within a step Consider the following example with multiple structure items (a structure item
in the parlance of the OCaml parse tree is a type definition or a top level let-binding):

let x = 1 + 2

let y = x + x

let z = 1 + y

First, of course, we begin by evaluating 1 + 2, and proceed from there. However, a lot of screen space is
used by printing out these five lines (three code, two blank) for each step, and it can be hard for the user to
follow along. Should we remove a structure item when it is no longer needed, assuming that the user is
interested only in the final result of z? This results in a shorter but arguably incomplete trace. Or, instead,
only show the structure item which is currently being evaluated? Most likely, this would be a configurable
option with a sensible default, which is probably to reduce the trace as much as possible.

3.5 The Standard Library

OCaml comes with a small but useful library of routines. These fall broadly into three categories: (a)
those which are simply there to provide a selection of common routines, useful for many programs, but
which the user could write themselves – entirely in OCaml – if they wanted. For example, List.map;
(b) those which are in the Standard Library because they are used in the implementation of the OCaml
toolchain, but seemed to the authors to be generic enough as to be useful for the general programmer
(when a programming language is in its infancy, the general programmer and the compiler author are one
and the same); and (c) those which must be in the Standard Library because they provide facilities which
pure OCaml programs could not provide, or use an external symbol, or talk to the runtime.

Categories (a) and (b) are easy to deal with – we are just interpreting standard OCaml code, so it is as if
the user had themselves supplied the code. The OCamli interpreter knows how to load multiple modules
as libraries using command line arguments. For example, the following command line loads modules A



John Whitington & Tom Ridge 23

and B, performing any module initialisation code, then executes the code given in the -e argument in an
environment in which such modules exist:

$ ocamli a.ml b.ml -e 'let () = B.calc 10'

It is category (c) which requires special treatment. Functions which are external to OCaml are introduced
like this:

external word_size : unit -> int = "%word_size"

This name might be exported directly or might be used in the definition of a Standard Library function
which is then exported. In the example above, it indicates that a function of type unit → int is expected
to be available at link time under the symbol %word_size and that it is to be given the name word_size.
When we come across such an external declaration in a .ml file (such as when loading the Standard
Library), how should OCamli deal with it? What we do is to write (or generate) a binding for it. The
Tinyocaml.t datatype already exhibited contains the constructor CallBuiltIn:

CallBuiltIn of ... * (Tinyocaml.env -> Tinyocaml.t list -> Tinyocaml.t)

This inclusion of a native OCaml function into the Tinyocaml.t data type for programs is the mechanism
by which the gap between the interpreted and native worlds is bridged. It represents an OCaml function
which takes an environment and a list of Tinyocaml.t arguments, calls some external native function and
returns a Tinyocaml.t result.

We can use this CallBuiltIn mechanism to build an interface to our function, and a way to look up such
an interface by name so that, at runtime, it may be located and called by the interpreter:

external word_size : unit -> int = "%word_size"

let percent_word_size =
let f =
(function [Unit] ->

begin try Int (word_size ()) with e -> exception_from_ocaml e end
| _ -> failwith "%word_size")

in
("%word_size",
Fun (NoLabel, PatVar "*x", CallBuiltIn (None, "%word_size", [Var "*x"], f), []))

Notice the external declaration is retained. We then create an entry to look up this function in the table
of primitives ("%word_size", x) where x is a function containing a CallBuiltIn. This table will be
used for lookup when an external declaration is found in a .ml source file being interpreted. In this case,
it is a function of one argument *x (the asterisk is a crude mechanism to mark such functions so they are
not printed, since they are not part of the original source code). This function can then be applied to an
argument in the interpreted world. The argument will be assigned the name *x and used by the native
function – the result will be returned to the interpreted world. Now we need to look at the function f itself.
It pattern-matches on the input argument list, requiring just one argument [Unit]. It tries to produce
the output Int (word_size ()) by applying the native function word_size as defined by the external.
This is the result. Should an exception be raised during the execution of word_size (either in OCaml
code or C code) it comes into the OCaml runtime as an OCaml exception, and is then converted into a
Tinyocaml.t representation of an exception by the function exception_from_ocaml. Curried functions
may be defined using a helper for each arity. For example, for arity three:



24 Direct Interpretation of Functional Programs for Debugging

let mk3 name f =
(name,
Fun (NoLabel, PatVar "*x",

Fun (NoLabel, PatVar "*y",
Fun (NoLabel, PatVar "*z",

CallBuiltIn (None, name, [Var "*x"; Var "*y"; Var "*z"], f), []), []), []))

A function defined by this method may be partially applied as usual: only when all the arguments are
actually applied in the interpreter will the native function f be run. To avoid writing all these bindings for
the Standard Library by hand, a system has been developed which allows one to write, instead:

[%%auto external string_of_float : float -> string = "%string_of_float"]

The binding is then generated automatically. This system, works for most of the Standard Library
functions, and so reduces OCamli’s Standard Library file to a third of its previous size. Thus, we keep the
part of OCamli which may need updating when OCaml is updated as small as possible. In Section 3.7, we
shall see such a system might be expanded to allow an interface between compiled and interpreted code,
and identify its limitations.

3.6 Searching

We have discussed various mechanisms for making sure that OCamli’s output is reasonable in the default
case, and that there are options for deciding what information to display. But we will want a proper
searching mechanism too, especially for interactive scenarios. Of course, one way is to use standard
command line tools like grep. How well would that work for a typical search on a typical program? We
can foresee problems – for example, patterns may need to match independent of parenthesisation. In
essence, we are searching the text not the program’s syntactic structure.

The problem of searching in program code, either in textual or AST form, is known in the literature.
Paul and Prakash’s SCRUPLE system [32] uses an extended form of the programming language’s own
grammar, an approach from which we shall draw inspiration. Devanbu’s GENOA [11] also reuses the
language’s parser in the context of source code analysis. Crew’s ASTLOG [10] has similar aims. The
distinction between “lexical matchers” (such as regular expressions) and “syntactic matchers” (which
know the syntactic structure of what they are searching) is explored in Griswold et al’s TAWK system
[20].

If we are to provide tools of our own, what facilities might be useful? Here are the basic options provided
in OCamli:

-search show only matching evaluation steps
-highlight highlight the matching part of each matched step
-no-parens ignore parentheses when matching
-regexp search terms are regular expressions rather than the built-in system
-upto <n> show the n lines preceding each result line

For example, consider searching only for lines containing '4::':

=> 2::3::let l = [] in let f x = x + 1 in 4::map f l
=> 2::3::let l = [] in 4::map (fun x -> x + 1) l
=> 2::3::let l = [] in

4::(let f x = x + 1 in function [] -> [] | a::l -> let r = f a in r::map f l) l



John Whitington & Tom Ridge 25

=> 2::3::let l = [] in
4::(function [] -> [] | a::l -> let f x = x + 1 in let r = f a in r::map f l) l

=> 2::3::let l = [] in
4::(function [] -> [] | a::l -> let f x = x + 1 in let r = f a in r::map f l ) l

=> 2::3::4::(function [] -> [] | a::l -> let f x = x + 1 in let r = f a in r::map f l ) []

This shows only the evaluation steps containing the text “4::”, that is the ones where the list has almost
been processed. Our search syntax is tailored to the job of searching OCamli’s output. The search
pattern is parsed using OCaml’s lexer, and then we allow any amount of whitespace between tokens,
skip parentheses (if -no-parens is set), and allow the underscore character _ to stand for any token. A
regular expression is generated to represent this, and searching proceeds. For example, we can search
with -search '[_; _; _]' for only those steps of evaluation which contain lists of length exactly three:

List.map (fun x -> x + 1) [1; 2; 3]
=> (let f x = x + 1 in function [] -> [] | a::l -> let r = f a in r::map f l ) [1; 2; 3]
=> (function [] -> [] | a::l -> let f x = x + 1 in let r = f a in r::map f l ) [1; 2; 3]
=> (function a::l -> let f x = x + 1 in let r = f a in r::map f l ) [1; 2; 3]
=> [2; 3; 4]

The searches may be highlighted with -highlight:

List.map (fun x -> x + 1) [1; 2; 3]

=> (let f x = x + 1 in function [] -> [] | a::l -> let r = f a in r::map f l ) [1; 2; 3]

=> (function [] -> [] | a::l -> let f x = x + 1 in let r = f a in r::map f l ) [1; 2; 3]

=> (function a::l -> let f x = x + 1 in let r = f a in r::map f l ) [1; 2; 3]

=> [2; 3; 4]

There are also options to alter the type and number of results:

-invert-search invert the search, showing non-matching steps
-n show only n results
-until show only until this matches a printed step
-after show only after this matches a printed step
-until-any show only until this matches any step
-after-any show only after this matches any step
-invert-after invert the after condition
-invert-until invert the until condition
-stop stop computation after final search results
-repeat allow the after . . . until result to be repeated

These options allow the programmer to show output only after a search matches, and only until another
search matches. For example with -after '3 + 1' -until '2::3::4':

=> 2::3::let l = [] in let f x = x + 1 in let r = 3 + 1 in r::map f l
=> 2::3::let l = [] in let f x = x + 1 in let r = 4 in r::map f l
=> 2::3::let l = [] in let f x = x + 1 in 4::map f l
=> 2::3::let l = [] in 4::map (fun x -> x + 1) l
=> 2::3::let l = [] in

4::(let f x = x + 1 in function [] -> [] | a::l -> let r = f a in r::map f l) l
=> 2::3::let l = [] in

4::(function [] -> [] | a::l -> let f x = x + 1 in let r = f a in r::map f l) l
=> 2::3::let l = [] in
=> 2::3::4::

(function [] -> [] | a::l -> let f x = x + 1 in let r = f a in r::map f l ) []



26 Direct Interpretation of Functional Programs for Debugging

These searching mechanisms were arrived at through conjecture about and exploration of the most likely
useful tools. It remains to be seen what the best interface for our interpreter or debugger will be. We
discuss one promising option now – a mechanism for annotating source code to be interpreted, leaving the
rest of the program running natively at full speed.

3.7 An interface for debugging

In this section, we propose an unimplemented interface for debugging which uses the interpreter in a
novel way, inserting it into a normal compiled OCaml program. In Section 3.6, we mentioned a system
for expanding external definitions into shims for calling into C code:

[%%auto external string_of_float : float -> string = "%string_of_float"]

These [%%<name> <contents>] annotations are in fact a standard feature of recent versions of OCaml,
called PPX annotations. They may be attached to any parse tree node. When OCaml compiles a file, it
resolves such annotations by calling external processes (PPX extensions) which replace them with a parse
tree. Once all annotations are resolved, the source is typechecked and compiled as usual. And so, we
may use this mechanism to allow an OCaml program to be compiled as usual, except that the part we
wish to debug (and so be interpreted) is marked with an [@interpret] annotation. This time, instead of
communicating between OCaml and C code, we are communicating between the interpreted OCaml code
and compiled OCaml code.

The use of [@interpret] annotations to control which parts of the code are executed natively and which
parts are interpreted (and so have their steps of evaluation displayed on the screen) was motivated by
our observation that a tool like OCamli on its own would not fulfil our usability needs, in particular our
requirement that we must get it “inside” the build process. The improvement in speed (by interpreting only
what we need to debug) is a side-effect, but a pleasant one. Is another such side-effect of this mechanism
a natural and pliable human interface for debugging? If it is, we may be within sight of achieving our
original aim of a usable debugger. The interface would be:

1. Notice that a misbehaviour is occurring.

2. Knowing or speculating upon the location of the root cause, insert one or more appropriate
[@interpret] annotations in the code.

3. Recompile and run the code. The evaluation of the parts chosen will be shown.

4. If the source or nature of the bug is now clear:

(a) Change the source to fix the bug.

(b) Build and run again and inspect the output to be sure it is fixed.

(c) Remove the [@interpret] annotation(s).

5. If the source or nature of the bug is not yet clear, due to a wrong or insufficient choice of
[@interpret] annotations, return to step 2.

Let us explore the design space of such debugging annotations. Consider the following possibilities, for
instance:



John Whitington & Tom Ridge 27

[@interpret] The piece of code annotated is interpreted, but functions it calls into are not. For example,
consider the following buggy function on lists:

let rec pairs f a l =
match l with

[] -> rev a
| [_] -> []
| h::h'::t -> pairs f (f h h'::a) t

let x = pairs ( + ) [] [1; 2; 3; 4]

It is supposed to take, for example [1; 2; 3; 4] to [1 + 2; 2 + 3; 3 + 4] if the function f is
addition. The input a is an accumulator to make it tail-recursive. There are two bugs in this version
above. Firstly, for the case of the single-item list, the result should be rev a, as for the empty list.
Secondly, the last case should read pairs f (f h h'::a) (h'::t).

We can add an [@interpret] annotation on to the outer invocation of pairs:

let rec pairs f a l =
match l with

[] -> rev a
| [_] -> []
| h::h'::t -> pairs f (f h h'::a) t

let x = [@interpret] pairs ( + ) [] [1; 2; 3; 4]

Now, upon compiling the program the interpreter is embedded, and all the code inside pairs is
interpreted, but external calls (for example to rev) are native, and so elided from the output. We
think this is the sensible default, both for elision of information and elision of computation. The
output upon running the program would be the following:

pairs ( + ) [] [1; 2; 3; 4]
{matches h::h'::t}
=> pairs ( + ) [3] [3; 4]
{matches h::h'::t}
=> pairs ( + ) [7; 3] []
{matches []}
=> [3; 7]

The first three lines are generated from the pairs function call itself, the last line from the returned
value. Note that the default elision also does not show the details of the matches in as much detail
as the output of OCamli we showed in Section 2.1. The bug is plain to see, so we correct it:

let rec pairs f a l =
match l with

[] -> rev a
| [_] -> []
| h::h'::t -> pairs f (f h h'::a) (h'::t)

let x = [@interpret] pairs ( + ) [] [1; 2; 3; 4]

We compile the code again, with the annotation in the same place, and try again:

pairs ( + ) [] [1; 2; 3; 4]
{matches h::h'::t}
=> pairs ( + ) [3] [2; 3; 4]
{matches h::h'::t}



28 Direct Interpretation of Functional Programs for Debugging

=> pairs ( + ) [5; 3] [3; 4]
{matches h::h'::t}
=> pairs ( + ) [7; 5; 3] [4]
{matches [_]}
=> []

Still there is a bug. Since the accumulator looks close to correct during evaluation, only to see the
output disappear at the last moment, we deduce it must be the match case [_] which is wrong, and
we correct it:

let rec pairs f a l =
match l with

[] | [_] -> rev a
| h::h'::t -> pairs f (f h h'::a) (h'::t)

let x = [@interpret] pairs ( + ) [] [1; 2; 3; 4]

Here is the final, correct output:

pairs ( + ) [] [1; 2; 3; 4]
{matches h::h'::t}
=> pairs ( + ) [3] [2; 3; 4]
{matches h::h'::t}
=> pairs ( + ) [5; 3] [3; 4]
{matches h::h'::t}
=> pairs ( + ) [7; 5; 3] [4]
{matches [_]}
=> [3; 5; 7]

Now, we can remove our annotation:

let rec pairs f a l =
match l with

[] | [_] -> rev a
| h::h'::t -> pairs f (f h h'::a) (h'::t)

let x = pairs ( + ) [] [1; 2; 3; 4]

Our debugging is complete.

[@interpret-all] The piece of code annotated is interpreted, and so is every function it calls, if
available (the default action of [@interpret] is that calls into other modules are native).

[@interpret-logto] The output is not written to standard output or standard error, but appended to
a file. This can be used to separate the output of several annotations, or several runs of the same
program, or as a crude logging mechanism.

[@interpret-env] Interpret only if an environment variable is set, otherwise run natively. This would
allow code to remain unaltered after debugging, leaving the annotation in place in case the bug is
not really fixed.

[@interpret-sub] Pause the program at the expression given, printing the current expression and
allowing the programmer to substitute their own.

[@show-only] Simply show a given expression, but run it natively. This is a way of adding a generic
printer to OCaml (like Java’s toString or Haskell’s show).



John Whitington & Tom Ridge 29

[@interpret-matching] Give a search term (like OCamli) and show only those lines of the evaluation
when interpreting.

[@interpret-n <n>] Show only <n> times through this code point. After that, be silent whilst continuing
to run.

[@exit-after <n>] Show only <n> times through this code point. After that, exit.

[@interpret-interactive <n>] Upon interpreting, dump into an OCamli-like interface which acts as
an interactive debugger, setting and clearing breakpoints and so on.

We can see that many well-known mechanisms of debugging, such as breakpointing, find a new home here.
The approach is in general a low-impact one: the programmer need use only the parts of the debugging
system they wish to, or which suit their mental model or debugging style. We hope that this makes the
debugger more likely to be used by more people.

It is possible to imagine other interface models, of course. We could, for example, produce a REPL-like
program which is able to show steps of evaluation in addition to its usual functionality, for learning or
testing, or light debugging. But the annotation-based one we have alighted upon seems promising, so we
persevere with it for now.

It is important to point out that for this scheme to work, there would need to be a mechanism for types
to be known at the time the annotation is expanded, such that values can be reliably used across the
compiled/interpreted boundary. This might require a typed analog of the PPX system, where the annotation
is expanded after typechecking has occured. But this is a relatively minor modification to the OCaml
compiler.

Summary We have demonstrated how to get our interpreter inside the build process of programs written
in, or partly in, OCaml, and noted that this helps us achieve many of the aims of making a debugger which
is available whenever the programmer needs it. We have seen how selective interpretation could lead to
much more reasonable running times for programs we wish to debug by reducing the part which need be
interpreted.

4 Evaluation

We have looked again at the problem of debugging, identified what we believe to be a debugger design
which may lead to more people using debugging tools, and built a proof-of-concept of part of it for the
functional language OCaml. By what criteria do we measure success? The primary measure, of course,
is whether the tool, once finished, is widely used. Quantitively, we can measure two things: how many
people use the tool in preference to another, and how many in preference to nothing at all or more often
than they used their previous tool. Does it replace or merely complement other tools?

Our plan was to look at the literature and practice of debugging, and try to discern those qualities which
separate a debugger which is useful and used from one which lies unused. This was motivated by
observing the widespread feeling amongst programmers that using a debugger would be more common
if only it were more easily applicable to their problems. That is to say, the feeling that there is nothing
fundamentally impossible about producing a widely used debugger. We looked at this in the context of
functional programming especially, working on the assumption that functional programming is different



30 Direct Interpretation of Functional Programs for Debugging

enough from imperative programming that there are likely to be some differences in the debugging
process.

We have identified what we believe to be the key requirements for a usable debugger – that it should be
available all the time, whenever the programmer needs it, and that it should be sufficiently flexible so as to
be unobtrusive when not in use. There are, of course, many other requirements for a good debugger. But
we have claimed that without the accessibility requirement being fulfilled, the rest is in vain. We chose
the radical approach to these key requirements: to build a naive, step-by-step interpreter. The supposed
advantages were that this would result in accessibility-by-default, that there would be no information loss
(since there is no compilation process), and that the obvious downside of interpretation – slowness – could
be mitigated.

OCamli was written, firstly, to answer the question “What would an interpreter for OCaml look like?”, and
secondly to begin to explore the design space of visualizing (and thereby debugging) OCaml programs.
However, it does not pass our tests of what a good debugger would look like – and not only because it
does not yet support the whole language. Let us suppose now that OCamli were to be finished to support
the whole of OCaml. What would it still lack, with regard to our principles and, in particular, the tests we
set out in Section 2.2? OCamli, as presently constructed, does not meet the most important of the tests. It
cannot be used as an alternative to the compiler except for the simplest of projects, and cannot be used
with mixed C/OCaml code. These are design flaws, and impact upon usability, in particular the notion of
accessibility we have been concerned with.

OCamli, then, is an interesting exposition of our central idea of debugging-by-interpretation, but flawed
with regard to usability, both in its choice of interface, and by dint of its failure to address fully the notion
of accessibility. We have identified a solution to this problems, a mechanism by which the interpreter may
be placed in an executable, alongside native code. We believe this could solve the remaining problems.

5 Conclusions and future work

We have looked again at the history and present practice of debugging and tried to identify the essential
characteristics which separate debuggers which are likely to be used from those which are likely not
to be. Working from these principles, we have described a design for, and early prototype of, a new
debugger for the functional language OCaml based on the concept of direct interpretation, and a design
for a mechanism for it to be embedded into the build process in such a way that it is always available. We
believe it to be promising, but it is too early to say if it really represents a significant step forward – the
problem of debugging is old and intransigent.

As we have discussed, the ultimate test is, of course, whether anyone uses it. So, simply put, our most
important item of future work is to provide a complete implementation as a concrete way of supporting
(or undermining) our thesis.

Some of the technical mechanisms we have used to create this debugger are rather specific to OCaml – to
what extent might the insights gained be useful in other languages? It would be interesting to see if this
mixture of interpretation and compilation can be applied elsewhere. We have, thus far, made no attempt at
preserving the time or space complexity of programs under interpretation, even when the intermediate
steps are not shown. Is it possible to interpret programs in such a way that we can give a guarantee about
the complexity?



John Whitington & Tom Ridge 31

In addition, we have not yet formalized certain parts of the implementation, for example how to match
the OCaml compiler’s actual order of evaluation, in cases where it is not specified in the language – an
important part of being able to reproduce bugs using the debugger. There will doubtless be several difficult
little issues like this.

The kind of diagrams our interpreter draws are also useful for teaching, that is to say testing out little
programs a student is writing rather than debugging large codebases. It would be interesting to look
at how exactly learning to program and debugging are intertwined or equivalent tasks, and see if our
interpreter helps beginning students. Besides teaching and debugging, having a small-step interpreter
readily available for a language, especially one which ranks equally with the compiler and can be mixed
with it at will, may have more uses which we have yet to discover.

References

[1] Mikhail Auguston & Juris Reinfields (1994): A Visual Miranda Machine. In: Software Education Conference,
1994. Proceedings., IEEE, pp. 198–203, doi:10.1109/SEDC.1994.475337.

[2] R.M. Balzer (1969): EXDAMS – Extendable Debugging And Monitoring System. In: Proceedings of the May
14-16, 1969, Spring Joint Computer Conference, Memorandum (Rand Corporation), ACM, Rand Corporation,
pp. 567–580, doi:10.1145/1476793.1476881.

[3] Paul T Brady (1968): Writing an online debugging program for the experienced user. Communications of the
ACM 11(6), pp. 423–427, doi:10.1145/363347.363388.

[4] Rod M Burstall, David B MacQueen & Donald T Sannella (1980): HOPE: An experimental applicative
language. In: Proceedings of the 1980 ACM conference on LISP and functional programming, ACM, pp.
136–143, doi:10.1145/800087.802799.

[5] Arthur Charguéraud, Alan Schmitt & Thomas Wood (2018): JSExplain: A Double Debugger for JavaScript.
In: The Web Conference 2018, pp. 1–9, doi:10.1145/3184558.3185969.

[6] Olaf Chitil, Colin Runciman & Malcolm Wallace (2002): Transforming Haskell for tracing. In: Symposium
on Implementation and Application of Functional Languages, Springer, pp. 165–181, doi:10.1007/3-540-
44854-3_11.

[7] John Clements, Matthew Flatt & Matthias Felleisen (2001): Modeling an Algebraic Stepper. In: Proceedings
of the 10th European Symposium on Programming Languages and Systems, ESOP ’01, Springer-Verlag,
London, UK, UK, pp. 320–334, doi:10.1007/3-540-45309-1_21.

[8] Youyou Cong & Kenichi Asai (2016): Implementing a stepper using delimited continuations. Software
Science 39, pp. 42–54, doi:10.29007/l2wb.

[9] Aaron Contorer (2015): What do Haskellers want? Over a thousand users tell us. Available at https:
//www.fpcomplete.com/blog/2015/05/thousand-user-haskell-survey.

[10] Roger F Crew et al. (1997): ASTLOG: A Language for Examining Abstract Syntax Trees. In: DSL, 97,
pp. 18–18. Available at https://www.usenix.org/legacy/publications/library/proceedings/dsl97/
full_papers/crew/crew.pdf.

[11] Premkumar T Devanbu (1999): GENOA – a customizable, front-end-retargetable source code analysis
framework. ACM Transactions on Software Engineering and Methodology (TOSEM) 8(2), pp. 177–212,
doi:10.1145/304399.304402.

[12] Marc Eisenstadt (1997): My hairiest bug war stories. Communications of the ACM 40(4), pp. 30–37,
doi:10.1145/248448.248456.

[13] Thomas G Evans & D Lucille Darley (1966): On-line debugging techniques: a survey. In: Proceedings of the
November 7-10, 1966, Fall Joint Computer Conference, ACM, pp. 37–50, doi:10.1145/1464291.1464295.

http://dx.doi.org/10.1109/SEDC.1994.475337
http://dx.doi.org/10.1145/1476793.1476881
http://dx.doi.org/10.1145/363347.363388
http://dx.doi.org/10.1145/800087.802799
http://dx.doi.org/10.1145/3184558.3185969
http://dx.doi.org/10.1007/3-540-44854-3_11
http://dx.doi.org/10.1007/3-540-44854-3_11
http://dx.doi.org/10.1007/3-540-45309-1_21
http://dx.doi.org/10.29007/l2wb
https://www.fpcomplete.com/blog/2015/05/thousand-user-haskell-survey
https://www.fpcomplete.com/blog/2015/05/thousand-user-haskell-survey
https://www.usenix.org/legacy/publications/library/proceedings/dsl97/full_papers/crew/crew.pdf
https://www.usenix.org/legacy/publications/library/proceedings/dsl97/full_papers/crew/crew.pdf
http://dx.doi.org/10.1145/304399.304402
http://dx.doi.org/10.1145/248448.248456
http://dx.doi.org/10.1145/1464291.1464295


32 Direct Interpretation of Functional Programs for Debugging

[14] Matthias Felleisen, Robert Bruce Findler, Matthew Flatt, Shriram Krishnamurthi, Eli Barzilay, Jay McCarthy
& Sam Tobin-Hochstadt (2015): The racket manifesto. In: LIPIcs-Leibniz International Proceedings in
Informatics, 32, Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, doi:10.4230/LIPIcs.SNAPL.2015.113.

[15] Robert Bruce Finder, John Clements, Cormac Flanagan, Matthew Flatt, Shriram Krishnamurthi, Paul Steckler
& Matthias Felleisen (2002): DrScheme: A Programming Environment for Scheme. Journal of Functional
Programming 12(2), pp. 159–182, doi:10.1017/S0956796801004208.

[16] Visual Studio Docs: Debugging F#. Available at http://docs.microsoft.com/en-us/visualstudio/

debugger/debugging-f-hash.

[17] Andy Gill (2000): Debugging Haskell by Observing Intermediate Data Structures. Electr. Notes Theor.
Comput. Sci. 41(1), p. 1, doi:10.1016/S1571-0661(05)80538-9.

[18] Doug Goldson (1993): A Symbolic Calculator for Non-Strict Functional Programs. The Computer Journal
37(3), pp. 177–187, doi:10.1093/comjnl/37.3.177.

[19] Ralph Grishman (1970): The debugging system AIDS. In: Proceedings of the May 5-7, 1970, Spring Joint
Computer Conference, ACM, pp. 59–64, doi:10.1145/1476936.1476952.

[20] William G Griswold, Darren C Atkinson & Collin McCurdy (1996): Fast, flexible syntactic pattern matching
and processing. In: Program Comprehension, 1996, Proceedings., Fourth Workshop on, IEEE, pp. 144–153,
doi:10.1109/WPC.1996.501129.

[21] Cordelia V Hall & John T O’Donnell (1985): Debugging in a side effect free programming environment. ACM
SIGPLAN Notices 20(7), pp. 60–68, doi:10.1145/17919.806827.

[22] Mark Halpern (1965): Computer programming: the debugging epoch opens. Computers and Automation
14(11), pp. 28–31.

[23] Mark Halpern (2005): Assertive Debugging: Correcting Software As If We Meant It – Assertive debugging is a
new way to make embedded systems ensure their own health by having your code monitor itself. Embedded
Systems Programming 18(6), pp. 28–35.

[24] Dick Hamlet (1983): Debugging "Level": Step-wise Debugging. SIGPLAN Not. 18(8), pp. 4–8,
doi:10.1145/1006142.1006150.

[25] Xavier Leroy, Damien Doligez, Alain Frisch, Jacques Garrigue, Didier Rémy & Jérôme Vouillon (2018): The
OCaml Language. Available at http://ocaml.org/.

[26] Simon Marlow, José Iborra, Bernard Pope & Andy Gill (2007): A Lightweight Interactive Debugger for
Haskell. In: Proceedings of the ACM SIGPLAN Workshop on Haskell Workshop, Haskell ’07, ACM, New
York, NY, USA, pp. 13–24, doi:10.1145/1291201.1291204.

[27] Erik Meijer & John Gough (2012): Technical overview of the Common Language Runtime, 2000. Available at
https://research.microsoft.com/en-us/um/people/emeijer/papers/clr.pdf.

[28] Robin Milner (1983): How ML evolved. Polymorphism: The ML/LCF/Hope Newsletter 1.

[29] The OCamli Interpreter. Available at http://github.com/johnwhitington/ocamli.

[30] Cristóbal Pareja-Flores, Jaime Urquiza-Fuentes & J. Ángel Velázquez-Iturbide (2007): WinHIPE: An IDE for
Functional Programming Based on Rewriting and Visualization. ACM SIGPLAN Notices 42(3), pp. 14–23,
doi:10.1145/1273039.1273042.

[31] Chris Parnin & Alessandro Orso (2011): Are Automated Debugging Techniques Actually Helping Program-
mers? In: Proceedings of the 2011 International Symposium on Software Testing and Analysis, ISSTA ’11,
ACM, New York, NY, USA, pp. 199–209, doi:10.1145/2001420.2001445.

[32] Santanu Paul & Atul Prakash (1994): A framework for source code search using program patterns. IEEE
Transactions on Software Engineering 20(6), pp. 463–475, doi:10.1109/32.295894.

[33] Marian Petre & Ed de Quincey (2006): A Gentle Overview of Software Visualization. PPIG Newsletter, pp.
1–10.

http://dx.doi.org/10.4230/LIPIcs.SNAPL.2015.113
http://dx.doi.org/10.1017/S0956796801004208
http://docs.microsoft.com/en-us/visualstudio/debugger/debugging-f-hash
http://docs.microsoft.com/en-us/visualstudio/debugger/debugging-f-hash
http://dx.doi.org/10.1016/S1571-0661(05)80538-9
http://dx.doi.org/10.1093/comjnl/37.3.177
http://dx.doi.org/10.1145/1476936.1476952
http://dx.doi.org/10.1109/WPC.1996.501129
http://dx.doi.org/10.1145/17919.806827
http://dx.doi.org/10.1145/1006142.1006150
http://ocaml.org/
http://dx.doi.org/10.1145/1291201.1291204
https://research. microsoft. com/en-us/um/people/emeijer/papers/clr. pdf
http://github.com/johnwhitington/ocamli
http://dx.doi.org/10.1145/1273039.1273042
http://dx.doi.org/10.1145/2001420.2001445
http://dx.doi.org/10.1109/32.295894


John Whitington & Tom Ridge 33

[34] Steve Reeves, Doug Goldson, Pat Fung, Mike Hopkins & Richard Bornat (1994): The Calculator Project
– Formal Reasoning about Programs. In: Software Education Conference, 1994. Proceedings., IEEE, pp.
166–173, doi:10.1109/SEDC.1994.475332.

[35] Elaine Regelson & Andrew Anderson (1994): Debugging Practices for Complex Legacy Software Systems. In:
ICSM, pp. 137–143, doi:10.1109/ICSM.1994.336781.

[36] Mark Shinwell: libmonda: Make OCaml native debugging awesome. Available at http://mshinwell.github.
io/libmonda/.

[37] Juha Sorva, Ville Karavirta & Lauri Malmi (2013): A Review of Generic Program Visualization Systems
for Introductory Programming Education. Transactions in Computing Education 13(4), pp. 15:1–15:64,
doi:10.1145/2490822.

[38] Richard M Stallman (1981): EMACS the extensible, customizable self-documenting display editor. ACM
Books, doi:10.1145/800209.806466.

[39] Guy Steele (1984): Common LISP: the language. Digital Press 20, p. 124.
[40] Don Syme: F Sharp at Microsoft Research. Available at https://www.microsoft.com/en-us/research/

project/f-at-microsoft-research/.
[41] Jonathan Paul Taylor (1996): Presenting the Lazy Evaluation of Functions. Ph.D. thesis, Queen Mary,

University of London.
[42] Andrew Tolmach & Andrew W. Appel (1995): A Debugger for Standard ML. Journal of Functional Program-

ming 5, pp. 155–200, doi:10.1017/S0956796800001313.
[43] David S. Touretzky (1989): Visualizing Evaluation in Applicative Languages. Commun. ACM 35(10), pp.

49–59, doi:10.1145/135239.135241.
[44] David Ungar, Henry Lieberman & Christopher Fry (1997): Debugging and the Experience of Immediacy.

Communications of the ACM 40(4), pp. 38–43, doi:10.1145/248448.248457.
[45] J. Urquiza-Fuentes & J. A. Velázquez-Iturbide (2004): A Survey of Program Visualizations for the Functional

Paradigm. In: Proc. 3rd Program Visualization Workshop, pp. 2–9. Available at https://www.dcs.warwick.
ac.uk/pvw04/p01.pdf.

[46] Jaime Urquiza-Fuentes & J. Ángel Velázquez-Iturbide (2009): A Survey of Successful Evaluations of Program
Visualisation and Algorithm Animation Systems. ACM Transactions on Computing Education (TOCE) 9(2),
p. 9, doi:10.1145/1538234.1538236.

[47] Philip Wadler (1998): Why No One Uses Functional Languages. SIGPLAN Not. 33(8), pp. 23–27,
doi:10.1145/286385.286387.

[48] John Whitington & Tom Ridge (2017): Visualizing the Evaluation of Functional Programs for Debugging. In:
6th Symposium on Languages, Applications and Technologies, OASIcs 56, Schloss Dagstuhl–Leibniz-Zentrum
fuer Informatik, Dagstuhl, Germany, pp. 7:1–7:9, doi:10.4230/OASIcs.SLATE.2017.7.

http://dx.doi.org/10.1109/SEDC.1994.475332
http://dx.doi.org/10.1109/ICSM.1994.336781
http://mshinwell.github.io/libmonda/
http://mshinwell.github.io/libmonda/
http://dx.doi.org/10.1145/2490822
http://dx.doi.org/10.1145/800209.806466
https://www.microsoft.com/en-us/research/project/f-at-microsoft-research/
https://www.microsoft.com/en-us/research/project/f-at-microsoft-research/
http://dx.doi.org/10.1017/S0956796800001313
http://dx.doi.org/10.1145/135239.135241
http://dx.doi.org/10.1145/248448.248457
https://www.dcs.warwick.ac.uk/pvw04/p01.pdf
https://www.dcs.warwick.ac.uk/pvw04/p01.pdf
http://dx.doi.org/10.1145/1538234.1538236
http://dx.doi.org/10.1145/286385.286387
http://dx.doi.org/10.4230/OASIcs.SLATE.2017.7

	Introduction
	The debugging problem
	Debugging functional programs

	Approach
	An example
	Design choices
	Correctness and Maintainence
	Functional program visualization

	OCamli: an interpreter for OCaml
	A new representation for OCaml programs
	Conversion to and from real OCaml programs
	Evaluating expressions
	Dealing with size by elision
	The Standard Library
	Searching
	An interface for debugging

	Evaluation
	Conclusions and future work

